Сборник задач по физике. Кинематика

Базовый курс по электротехнике
Элементы электрических цепей
Топология электрических цепей
Переменный ток
Элементы цепи синусоидального тока
Методы контурных токов и узловых потенциалов
Основы матричных методов
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами
Метод эквивалентного генератора
Графические методы расчета
Пассивные четырехполюсники
Электрические фильтры
Трехфазные электрические цепи
Расчет трехфазных цепей

Мощность в трехфазных цепях.

Курс лекций и практических занатий по черчению
Выполните сопряжение тупого, прямого и острого углов
Основные способы проецирования
Технический рисунок
Контур детали с элементами сопряжения
Построение лекальных кривых
Построение аксонометрических проекций
Геометрические построения
Материаловедение
Механические испытания материалов
Испытания на твердость
Измерение ударной вязкости
Кристаллическое строение металлов
Кристаллизация
Основы теории сплавов
Металлы
Полупроводники
Электропроводность твёрдых диэлектриков
Диэлектрическая проницаемость и диэлектрические потери диэлектриков
Электрическая прочность жидких и газообразных диэлектриков
Пробой твёрдых диэлектриков
Исследование магнитных материалов
Математика
Примеры задач по математике
Линейная алгебра и аналитическая геометрия
Функции
Понятие дифференциала функции
Сходимость ряда
Теория вероятности и математической статистики
Дифференциальные уравнения
Вычислить предел функции
История искусства
Французский стиль в русской архитектуре
Классицизм
Романский стиль
Искусство барокко
Каролингское Возрождение
Города и замки Германии
Готика Франции
Петербург
Античность
Из истории художественной росписи тканей
Декоративное искусство Японии
Перевод рисунка на ткань
 

Кинематика материальной точки. Задачи по курсу общей физики

Задача Точка движется по закону с параметрами a, b и k. Случай k=0 здесь не представляет интереса. Равенство нулю a или b означает прямолинейное перемещение вдоль одной из координатных осей. Если они оба отличны от нуля, то траектория является отрезком гиперболы y=ab/x.

Задача. Исходя из первого и второго законов Кеплера, определить ускорение планеты. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце. Угол j отсчитываем от направления перигелия. Уравнение эллипса с эксцентриситетом e и параметром p в полярных координатах имеет вид:

Методика решения задач по кинематике Каждая физическая задача имеет свои особенности. Поэтому при решении любых физических задач, в том числе и кинематических, полезно придерживаться следующего порядка выполнения основных действий. Внимательно прочитав задачу, необходимо выяснить заданные условия и какие параметры необходимо определить. Кратко записать основные значения заданных величин, все внесистемные единицы перевести в систему СИ. Выяснить по условию задачи характер движения. Сделать схематический чертеж, отображающий описанное в задаче движение. Изобразить на нем траекторию движения, векторы скорости, ускорения, перемещения. Выбрать систему координат, связанную с телом отсчета, показать положительное направление координатных осей. Координатные оси выбирают так, чтобы проекции векторов на них выражались, возможно, более простым образом

Частица движется к притягивающему центру по плоской траектории где r и φ — известные функции времени. В начальный момент времени угол φ равен нулю, а скорость тела направлена перпендикулярно радиус‑вектору и по абсолютной величине равна v0. Полагаем, что сохраняется постоянной секторная скорость, то есть справедлива формула ( 11 ). Определить зависимость скорости от расстояния r до притягивающего центра, а также трансверсальную и радиальную компоненты ускорения.

Заряженная частица совершает пространственное движение в однородном и постоянном магнитном поле

Электростатика Примеры выполнения контрольной, курсовой, лабораторной работы по физике

Проекция ускорения на естественные оси. Естественными осями при изучении криволинейного движения на плоскости принято считать касательную и нормаль к траектории. Тангенциальная и нормальная компоненты векторов часто позволяют полнее раскрыть физический смысл рассматриваемого движения. Вводимые ниже понятия напоминают те, которыми мы пользовались в полярной системе координат, но они не зависят от выбора системы отсчёта.

Точка описывает эллипс . Определить нормальную и тангенциальную компоненты ускорения, а также радиус кривизны траектории в точках A и B

Задачи для самостоятельного решения Из двух пунктов, расположенных на расстоянии х0 = 90 м друг от друга одновременно начали движение два тела в одном направлении. Тело, движущееся из первого пункта имеет скорость υ1 = 10 м/с, а тело движущееся из второго пункта имеет скорость υ2 = 4 м/с. Через сколько времени первое тело догонит второе. Результат представить в единицах СИ. 

Кинематика специальной теории относительности Постулаты Эйнштейна. Никакие эксперименты, проводимые в данной лабораторной инерциальной системе не позволяют различить находится эта система в состоянии покоя или равномерного и прямолинейного движения.

Пример. Автомобиль проходит первую треть пути со скоростью , а оставшуюся часть пути – со скоростью = 50 км/ч. Определить скорость на первом участке пути, если средняя скорость на всем пути  = 37,5 км/ч. Анализ и решение: Обозначим весь путь через S, время, затраченное на прохождение первого участка пути – через t1 время движения на втором участке пути – через t2.

Тело, падающее без начальной скорости с некоторой высоты h1, прошло последние h2 = 30 м за время t2 = 0,5 с. Найти высоту падения hl и время падения t1. Сопротивлением воздуха пренебречь.

По графику зависимости координаты х от времени t, изображенной на рисунке построить графики зависимости  и

Ракета движется относительно неподвижного наблюдателя со скоростью υ = 0,99с (с – скорость света в вакууме). Какое время пройдет по часам неподвижного наблюдателя, если по часам, движущимся вместе с ракетой, прошел один год? Как изменятся линейные размеры тел в ракете (по линии движения) для неподвижного наблюдателя? Как изменится для этого наблюдателя плотность вещества в ракете?

С балкона вертикально вверх брошен мячик с начальной скоростью υ0 = 8 м/с. Через 2 с мячик упал на зем­лю. Определить высоту балкона над землей. Принять g = 10 м/с2. Результат представить в единицах СИ.

С какой наименьшей скоростью следует бросить тело под углом 56° к горизонту, чтобы оно перелетело через вертикальную стену высотой 5,6 м, если стена находится от точки бросания на расстоянии 5 м? Принять g = 10 м/с2. Результат представить в единицах СИ и округлить до десятых. 

Пропеллер самолета диаметром 3 м вращается при посадке с частотой 2000 мин–1. Посадочная скорость самолета относительно Земли равна 162 км/ч. Определить скорость точки на конце пропеллера при посадке. Результат представить в единицах СИ и округлить до целого числа.

Материаловедение