Примеры задач по математике Найти объем тела, ограниченного поверхностями Вычисление криволинейного интеграла Исследование функций при помощи производных Построение графиков функций

Двойной интеграл в декартовых координатах Геометрические приложения двойного интеграла Вычислить двойной интеграл Тройной интеграл в декартовых координатах Вычислить с помощью тройного интеграла объем тела Криволинейный интеграл

Примеры задач по математике. Разделы - предел, дифференцирование, интегрирование

Предельный анализ в экономике. Эластичность функции

В экономических исследованиях для обозначения производных часто пользуются специфической терминологией. Например, если f(x) есть производственная функция, выражающая зависимость выпуска какой-либо продукции от затрат фактора x, то f '(x) называют предельным продуктом ; если g(x) есть функция издержек, т. е. функция g(x) выражает зависимость общих затрат от объема продукции x, то g'(x) называют предельными издержками.

Предельный анализ в экономике - совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений. Большей частью плановые расчеты, основывающиеся на обычных статистических данных, ведутся в форме суммарных показателей. При этом анализ заключается главным образом в вычислении средних величин. Однако в некоторых случаях оказывается необходимым более детальное исследование с учетом предельных значений. Например, при выяснении издержек производства зерна в районе на перспективу принимают во внимание, что издержки могут быть различными в зависимости, при прочих равных условиях, от предполагаемых объемов сбора зерна, так как на вновь вовлекаемых в обработку худших землях издержки производства будут выше, чем по району в среднем. Определенный интеграл. Формула Ньютона-Лейбница. Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю

Если зависимость между двумя показателями v и x задана аналитически: v = f(x) - то средняя величина представляет собой отношение v/x, а предельная - производную .

Нахождение производительности труда

Экстремум функции Функция y=f ( x ) называется возрастающей ( убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство f (x 1 ) < f (x 2 ) ( f (x 1 ) > f (x 2 )).

Пример . Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Раскрытие неопределенностей. Правило Лопиталя

Частные производные. Метод наименьших квадратов

В экономике рассматриваются функции не только от двух, но и большего числа независимых переменных. Например, уровень рентабельности R зависит от прибыли П на реализованную продукцию, величин основных ( a ) и оборотных ( b ) фондов, R = П/( a+b ), т.е. R является функцией трех независимых переменных R = f (П, a , b ).

Частными производными второго порядка функции z = f ( x , y ) называются частные производные от ее частных производных первого порядка.

 


Применение пределов в экономических расчетах