Контрольная по математике Курсовая работа Физика Электротехника Инженерная графика Начертательная геометрия Техническое черчение Материаловедение Дизайн Курс "Детали машин"

Цилиндрическая симметрия.

Вводим цилиндрические координаты , переходит в . Вот у нас в цилиндрических координатах плотность  есть только функция от , то есть не зависит от  и не зависит от . Это означает, что имеется бесконечный цилиндр, и на поверхности цилиндра любого радиуса плотность заряда постоянна, и всё это дело продолжается до бесконечности по , вот такая ситуация. Сразу, конечно ясно, что физически это не реализуется, но в качестве некоторой идеализации это разумно. Напишем снова , значит, эквипотенциальные поверхности – это цилиндры с осью, совпадающей с осью симметрии, то есть с осью . А силовые линии лежат в плоскостях ортогональных оси . Так. В качестве замкнутой поверхности выбираем цилиндрическую поверхность радиуса  и высотой , цилиндрическая поверхность, закрытая двумя крышками для того, чтобы она была замкнутой. Нормаль всегда берётся наружу. Из соображений симметрии ясно  (напряжённость поля в любой точке цилиндрической поверхности направлена вдоль вектора , а величина зависит только от расстояния до оси симметрии). Поскольку у нас поверхность теперь задана в виде нескольких кусков, интеграл представится как сумма интегралов по этим кускам: .

Интеграл по крышкам равен нулю, потому что вектор  скользит по крышкам, скалярное произведение с нормалью – ноль. .

Внутренняя начинка этого цилиндра , это интеграл по . , где  - это заряд на единицу длины цилиндра радиуса , то есть это заряд лепёшки радиуса  единичной толщины. Отсюда мы получаем результат:

напряжённость поля во всех точках цилиндрической поверхности радиуса .

 

 

 

 

Эта формула убивает все проблемы, связанные с цилиндрической симметрией. И, наконец, третий пункт.
3) Поле, создаваемое равномерно заряженной плоскостью. Вот мы имеем плоскость YZ, заряженную до бесконечности. Эта плоскость заряжена с постоянной плотностью s. s называется поверхностная плотность заряда. Если взять элемент поверхности , то в нём будет заряд . Значит, симметрия такова, что при сдвигах вдоль  y и z ничего не меняется, это означает, что производные по y и z от чего угодно должны равняться нулю: . Это означает, что потенциал есть функция x только: . Вот такое следствие. Это означает, что любая плоскость ортогональная оси x является эквипотенциальной поверхностью. На любой такой плоскости j=const. Силовые линии ортогональны этим плоскостям, значит силовые линии прямые параллельные оси x. Из соображений симметрии следует, что, если здесь они идут вправо от плоскости, то слева они должны идти влево от плоскости (ожидается, что имеется зеркальная симметрия).

Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.

Пусть  – единичный вектор вдоль оси x. В качестве замкнутой поверхности берём цилиндр, прорезающий плоскость с двумя крышками. Напряжённости поля показаны на рисунке.

Интеграл по боковой поверхности ноль, потому что силовые линии скользят по боковой поверхности. Но как площади оснований цилиндра . Если крышки взяты на одинаковых расстояниях от плоскости, то опять вследствие симметрии  - функция расстояния до плоскости, тогда мы напишем так: . Тогда мы имеем:  , а это заряд, который сидит внутри нашей поверхности.

Отсюда получается: . Что мы видим, что длина цилиндра, ну, расстояние от крышек до плоскости, выпало из формулы, то есть на любом расстоянии от плоскости напряжённость поля одна и та же. Значит поле однородное. Напишем окончательно:

Эта формула автоматически учитывает и знак заряда: если. Вот эта формула даёт исчерпывающее описание поля заряженной плоскости. Если там не плоскость, а площадь конечной толщины, то поле надо разбить на тонкие пластины и вычислять.

Вот заметьте, для точечного заряда напряжённость поля убывает с расстоянием как , для цилиндра – как  и для плоскости вообще не убывает.

Два последние случая практически нереализуемые. Тогда какой смысл в этих формулах? Такой: например, эта формула справедлива вблизи середины плоского заряженного куска. Строго такая формула (однородное поле заполняет всё пространство) ни в какой физической ситуации не реализуется.