Контрольная по математике Курсовая работа Физика Электротехника Инженерная графика Начертательная геометрия Техническое черчение Материаловедение Дизайн Курс "Детали машин"

Энергия электростатического поля

Проблема такая: заряженный конденсатор обладает энергией, где локализована эта энергия, с чем она связана? Энергия – это интегральная характеристика, просто устройство обладает такой энергией, вопрос, повторяю, стоит в локализации энергии, то есть это энергия чего? Ответ такой: энергия конденсатора – это, на самом деле, энергия электростатического поля, энергия принадлежит полю, ни обкладкам конденсатора, ни заряду. Мы дальше получим чёткую теорему для энергии электромагнитного поля, а сейчас некоторые простые соображения.


Плоский конденсатор. Вот устройство, называемое плоским конденсатором, всем хорошо известное:

 Имеется в виду, что расстояние между пластинами много меньше характерного линейного размера, , S – площадь пластин. Пластины имеют большую площадь, зазор маленький, в этом случае силовые линии поля однородны и внешние заряды на него не влияют. Напряжённость поля равняется , где . Мы знаем формулу для пластины с поверхностной плотностью : , между пластинами поля складываются, снаружи уничтожаются. Так как поле однородное, разность потенциалов равняется: , где d – расстояние между пластинами. Тогда мы получим, что . Действительно, обнаружили, что разность потенциалов между пластинами – линейная функция заряда, это частное подтверждение общего правила. А коэффициент пропорциональности связан с ёмкостью: . Если объём конденсатора заполнен начинкой из диэлектрика, то будет более общая формула: 1).

А теперь займёмся формулой для энергии конденсатора: . Эта формула справедлива всегда. Для плоского конденсатора  мы получим: , где V – это объём области между пластинами. При наличии диэлектрика энергия плоского конденсатора равна: . Напряжённость поля внутри плоского конденсатора во всех точках одинакова, энергия пропорциональна объёму, а эта вещь  тогда выступает как плотность энергии, , энергия, приходящаяся на единицу объёма внутри конденсатора. Повторяю, дальше хорошее доказательство увидим, это пока как наводящее соображение, но положение таково. Электростатическое поле обладает энергией, и, если мы возьмём элемент объёма dV, а внутри этого элемента напряжённость поля равняется Е, то внутри этого объёма будет содержаться энергия , определяемая напряжённостью поля в точке внутри этого элемента. В любом конечном объёме V будет содержаться энергия, равная

Что это значит? Буквально вот что. Сейчас в этой аудитории имеется электростатическое поле, связанное с тем, что Земля обладает некоторым зарядом, и заряд противоположного знака в атмосфере, это поле однородное, я уже упоминал, наверняка, напряжённость такая: в точках, в которые я сейчас ткнул, разность потенциалов порядка 100В, то есть напряжённость этого поля порядка 100В/м. Значит, в этой аудитории присутствует энергия, вычисленная по этой формуле: , она размазана по всему пространству, энергия принадлежит электрическому полю. Можно ли её использовать? Тут тонкость такая, скажем, я пришёл с чемоданом, поставил тут чемодан, открыл его, потом закрыл, в объёме чемодана есть электрическое поле и, соответственно, энергия. Я взял чемодан и ушёл, унёс ли я эту энергию? Нет, потому что чемодан-то я унёс, а поле как было здесь, так и осталось. Тем не менее, можно ли эту энергию как-нибудь добыть? Да. Надо сделать так, чтобы энергия исчезла в этом объёме, скажем, электрическое поле исчезло в объёме этой аудитории, и тогда эта энергия выделится, если мы уничтожим поле, то энергия выделится.

Процедура, например, такая: вот имеется однородное поле, я беру металлическую пластину и вдвигаю её в это поле перпендикулярно силовым линиям, работа при этом не совершается и ничего не происходит; вдвигаю ещё одну пластину таким же образом, тоже ничего не происходит, ну, правда, внутри проводящей пластины поле исчезает, на поверхности выступают заряды, но это ерунда. А теперь я беру проводничок к одной пластине, ключ и проводничок к другой, тоже невинное дело, ничего при этом не происходит. А когда я замыкаю ключ, что произойдёт? Эти две пластины соединяются, это один проводник, это означает, что их потенциалы должны уравняться. Вначале на одном проводнике был потенциал , на другом , и разность потенциалов равнялась , где d – это расстояние между пластинами, а когда я их соединяю проводником =, как это может быть? Исчезает поле между пластинами, потому что разность потенциалов – это интеграл . Когда я их закорачиваю проводником, получается такая конфигурация:


Энергия этого исчезнувшего поля выделяется при замыкании. Я мог бы её даже утилизировать: не просто замкнуть, а мотор вставил бы, и при замыкании заряд перетекал бы по обмоткам электромотора, он прокрутится и совершит работу (если вы ключ разомкнёте, поле не восстановится).


На сколько этот процесс реализуется? Что такое молния и гром? Имеем землю, имеем облако (это обкладки конденсатора), между ними такое электрическое поле:

Что такое молния? Пробой, это порводничок, он сам собой замыкается. Происходит разряд, исчезает поле между облаком и землёй. Гром, это что такое? Выделение энергии этого поля. Весь этот гром, треск и молния – это выделение энергии между облаком и землёй.

Энергия конденсатора – это . Конечно, чтобы взять этот интеграл, нужно знать всё поле во всём пространстве, и каким же образом получается такая простая формула ? Ёмкость, на самом деле, это интегральная характеристика, для того, чтобы найти ёмкость какой-то системы зарядов, нужно знать поле во всём пространстве. Вся трудность вычисления интеграла эквивалентна трудности вычисления ёмкости.