Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Пример 5. Найти прямую пересечения плоскостей Р и Q.

Рис. 3.25 Преобразование комплексного чертежа Решение многих геометрических задач на комплексных чертежах этих объектов часто усложняется из-за того, что заданные геометрические объекты расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искаженном виде. Поэтому для более простого решения задач прибегают к преобразованию комплексного чертежа, которое переводит интересующие нас прямые и плоские фигуры из общего положения относительно плоскостей проекций в частное (прямые и плоскости проецирующие и уровня).

Решение. Плоскость Р и Q пересекаются по прямой общего положения, проходящей через точку-след (М1;М2) пересечения горизонтальных следов плоскостей. Точка-след (N1;N2) пересечения фронтальных следов плоскостей недоступна, т.к. эти следы плоскостей по заданию, в пределах чертежа не пересекаются.

Вместо точки (N1;N2) необходимо найти другую произвольную точку прямой пересечения, общую для заданных плоскостей. Для этого вводим вспомогательную плоскость R, например параллельную П которая, как известно, пересекает каждую из данных плоскостей по горизонтали. На их пересечении получаем вспомогательную точку (К1;К2), общую для данных плоскостей. Найдя эту вторую точку (К1;К2) прямой, проводим её проекцию: горизонтальную – через точки М1 и К1 и фронтальную через точки М2 и К2.

Пример 6. Найти точку пересечения прямой АВ с плоскостью Р (рис. 3.26)

Рис. 3.26

Решение. Обозначим искомую точку через точку К. Так как точка К (К1;К2) лежит на профильно-проецирующей плоскости. То её профильная проекция (К3) должна лежать на профильном следе (Р3) плоскости. Вместе с тем, так как эта же точка лежит и на прямой АВ, то её профильная проекция (К3) должна лежать так же где-то на профильной проекции (А3В3) прямой. Следовательно искомая точка должна лежать на их пересечении. Найдя профильный след плоскости и профильную проекцию прямой, получаем на их пересечении профильную проекцию (К3) искомой точки. Зная профильную проекцию (К3) искомой точки, находим две другие её проекции на одноименных проекциях прямой.

Пример 7. Даны плоскость Р и точка А. Определить расстояние то точки до плоскости (рис. 3.27)

Рис. 3.27

Решение. Опускаем из точки А (А1;А2) перпендикуляр на плоскость Р и находим его основание на этой плоскости, для чего ищем точку К (К1;К2) пересечения перпендикуляра с плоскостью. Имея проекции (А1К1;А2К2) отрезка перпендикуляра, определим его действительную величину методом прямоугольного треугольника.

Пример 8. Даны треугольник АВС и точка К. Определить расстояние между ними. (рис. 3.28)

Рис. 3.28

Решение. Опускаем из заданной точки Е (Е1;Е2) перпендикуляр на плоскость треугольника: К1Е1 перпендикулярно горизонтальной проекции горизонтали (К1Е1С1F1), К2Е2 перпендикулярно фронтальной проекции фронтали (К2Е2А2 D2). Находим точку пересечения перпендикуляра с плоскостью треугольника (К1;К2) , определяем натуральную величину отрезка перпендикуляра (К1Е1;К2Е2) методом прямоугольного треугольника.

 

Направление штриховки в каждой из плоскостей проекции рисунок 8.1 и рисунок 9.1.

Подпись:  

Рисунок 8.1							Рисунок 9.1

Эллипс – это лекальная кривая, которая заменяется на радиусную кривую – овал, как более простую в построении.

Пример построения окружности в изометрии на рисунке 10, а в диметрии – на рисунке 11.

В изометрии овал во всех трёх плоскостях проекциях строится одинаково. Подпись:  
Рисунок 11
Подпись:  
Рисунок 10


на главную