Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Метод плоско-параллельного перемещения

Этот метод является разновидностью метода вращения. Как известно, при вращении некоторой точки вокруг своей оси она описывает окружность, расположенную в плоскости, перпендикулярной оси вращения (рис. 4.7). Овалы для стандартных аксонометрических проекций окружности Теоретически окружность в аксонометрии проецируется в эллипс. Для упрощения построений допускается эллипс заменять четырехцентровым овалом

Рис. 4.7

Решение позиционных задач с помощью преобразования комплексного чертежа Многие позиционные задачи, главным образом, задачи на пересечение поверхностей с прямыми или плоскостями общего положения, удобно решать с помощью преобразования комплексного чертежа. В этом случае конечной целью преобразования является получение такой проекции оригинала, при которой участвующие в пересечении прямая или плоскость находятся в частном положении. Тогда в новом положении решение задачи значительно упрощается. При необходимости проекции общего элемента возвращают в исходный чертёж в обратном порядке.

Метод предусматривает построение дополнительных чертежей предмета вращением этого предмета вокруг оси в неизменной основной системе плоскостей проекций. Он широко используется в технике при рассмотрении и исследовании различных вращающихся форм конструкций механизмов и машин.

Одним из приложений метода в инженерной практике является исследование траекторий точек вращающихся элементов конструкций. На рис. 4.7 представлена схема вращения точки А вокруг оси MN.

В качестве оси вращения обычно используют прямые перпендикулярные или параллельные плоскостям проекций. На рис. 4.8 изображен эпюр вращения точки А вокруг оси MNП1.

Плоскость вращения ТП1 и на фронтальной проекции изображена следом Т2. Горизонтальная проекция О1 центра вращения О совпадает с проекцией M1N1 оси, а горизонтальная проекция О1А1 радиуса вращения ОА является его натуральной величиной. Поворот точки А на рис. 4.8 произведен на угол  против часовой стрелки так, чтобы в новом положении точки с проекциями 2, 1 радиус вращения был параллелен плоскости П2. При вращении точки вокруг вертикальной оси её горизонтальная проекция перемещается по окружности, а фронтальная проекция – по прямой параллельно оси ОХ.

Рис. 4.8

4.4. Метод вращения вокруг проецирующей прямой?

Этот метод применяют при решении некоторых задач, например при определении натуральной величины отрезка прямой. Для этого (рис. 4.9) достаточно ось вращения с проекциями M2N2, M1N1 выбрать так, чтобы она проходила через одну из крайних точек отрезка, например, точку с проекциями В1В2. Тогда при повороте точки А на угол  в положение П2, О11Х) отрезок АВ перемещается в положение АВП2 и, следовательно, проецируется на неё в натуральную величину ([В22] = [АВ]). Одновременно в натуральную величину будет проецироваться угол  наклона отрезка АВ к плоскости П1.

Рис. 4.9

Следует отметить, что при вращении объекта его проекция на плоскости, перпендикулярной к оси вращения, не изменяет своей формы и размеров. Что же касается другой проекции – на плоскости, параллельной оси вращения, то все точки этой проекции (кроме точек на оси вращения) перемещаются па прямым, параллельным оси проекций, и проекция изменяется по форме и по величине. Этим пользуются при методе плоскопараллельного перемещения, не задаваясь изображением оси вращения и не устанавливая радиуса вращения. При этом достаточно, не изменяя вида и величины одной из проекций рассматриваемой фигуры, переместить эту проекцию в требуемое положение, а затем построить другую проекцию по изложенной выше методике.

На рис. 4.10 произведены построения для определения истинной величины отрезка АВ методом плоскопараллельного перемещения.

Рис. 4.10

4.5 Метод вращения вокруг линии уровня

Этот метод также является разновидностью метода вращения и применяется для определения истинной величины плоских фигур, углов и т.д. Эти задачи решаются при повороте плоско фигуры вокруг одной из её линий уровня (обычно горизонтали или фронтали) до положения, параллельного одной из плоскостей проекций (П1 или П2).

При вращении какой либо плоской фигуры вокруг её линии уровня необходимо определить истинную величину радиуса вращения для построения проекции совмещения только одной точки; проекции совмещений остальных точек можно построить, не определяя их истинных радиусов вращения, а используя неподвижные точки прямых, на которых находятся эти точки (рис. 4.11). Как указывалось выше, этот метод более целесообразен при решении метрических задач с плоскими фигурами.

Рис. 4.11

Метод вращения вокруг следов плоскости (совмещение)

При изображении объекта в плоскости, заданной следами, иногда целесообразно использовать метод совмещения этой плоскости с одной из плоскостей проекции.

Этот метод также является частным случаем метода вращения. Осью вращения при этом является один из следов плоскости, а второй её след совмещается с той же плоскостью проекций (рис. 4.12).

Рис. 4.12

Совмещенное положение следа плоскости получают при вращении произвольной точки этого следа в плоскости, перпендикулярной другому следу плоскости.

 

Для построения наглядных изображений предметов, данных в вариантах 4,

5, 8, 10 (таблица 1), можно применить изометрическую проекцию. Очертание боковой поверхности цилиндра определяют прямые линии-образующие, проходящие касательно к эллипсам оснований. Точками касания являются концы большой оси эллипса (рисунок 13).

Подпись:  

Рисунок 13
Очертанием шара является окружность. Для изометрической проекции с приведенными коэффициентами радиус этой окружности равен 1,22R, а для диметрической проекции-1,06R. (R – радиус изображаемого в аксонометрии шара).

Подпись:  

Рисунок14
На рисунке 14 в изометрии изображен шар, усеченный двумя плоскостями. Чтобы построить его нужно из намеченного центра О провести окружность диаметра, равного 1.22d (d = 2R-диаметр шара). Если требуется построить половину, четверть или три четверти шара, то необходимо сначала вычертить овалы (рисунок 14), большие оси которых АВ и СD перпендикулярны осям Y и Z. Тогда овалы и точки m и n пересечения этих овалов определят границы трех четвертей шара.

Рассмотрим изображение разрезов в аксонометрии. На аксонометрических проекциях, как правило, не показывают невидимый контур штриховыми линиями. Для выявления внутреннего контура детали, так же как и на ортогональном чертеже, в аксонометрии выполняют разрезы, но эти разрезы могут не повторять разрезы ортогонального чертежа. Чаще всего на аксонометрических проекциях, когда деталь представляет собой симметричную фигуру, вырезают одну четвертую или одну восьмую часть детали. На аксонометрических проекциях, как правило, не применяют полные разрезы, так как такие разрезы уменьшают наглядность изображения.

При выполнении разрезов секущие плоскости направляют только параллельно координатным плоскостям х0z, yOz или хОу (рисунок12 д).

На рисунке. 12 е показан окончательный вид аксонометрической проекции детали после удаления лишних линий, обводки контуров детали и штриховки сечений. Сравнивая ортогональный и аксонометрический чертежи детали нетрудно заметить, что сечения в обоих случаях в соответствующих плоскостях проекций идентичны. Сечение на главном изображении детали соответствует на аксонометрическом изображении сечению плоскости хОz. Сечение на виде слева соответствует на аксонометрическом изображении сечению плоскости yOz.

Задание многогранников на эпюре Монжа (общие положения) Многие пространственные фигуры представлены в виде многогранников – замкнутых пространственных фигур, ограниченных плоскими многоугольниками. Вершины и стороны многоугольников являются вершинами и ребрами многогранника, при этом, если все его вершины и ребра находятся по одну сторону плоскости любой из его граней, то многогранник называется выпуклым, а все его грани являются выпуклыми многоугольниками.

Взаимное пересечение многогранников Что касается линии взаимного пересечения двух многогранников, то она определяется по точкам пересечения рёбер одного многогранника с гранями другого: это известная задача на определение точки пересечения прямой с плоскостью, хотя возможен вариант построения линии пересечения граней многогранников , т.е. линии пересечения двух плоскостей.

Обобщенные позиционные задачи. Пересечение кривой поверхности плоскостью. В сечении поверхности плоскостью получается плоская линия, которую строят по отдельным точкам. При этом сначала строят опорные точки, лежащие на контурных линиях поверхности, а также точки на ребрах и линиях основания поверхности.

Пересечение кривой поверхности прямой. Пересечение прямой с поверхностью Для того чтобы найти точки пересечения прямой с поверхностью любого тела (цилиндр, конус, шар и т. д.), поступают точно также, как и при нахождении точки пересечения прямой с плоскостью, а именно: заданную прямую заключают во вспомогательную плоскость


на главную