Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Касательные плоскости к не линейчатым поверхностям с эллиптическими точками.

Для построения касательной плоскости в заданной точке поверхности вращения, прежде всего, необходимо через заданную точку провести по поверхности две кривые линии. Касательные прямые к ним и определяют искомую касательную плоскость. За кривые линии обычно принимают параллель (окружность) и меридиан.

Пример 5. Построить плоскость касательную к тору в точке D. (рис. 10.9)

Рисунок 10.9

Рассмотрим алгоритм решения:

1. Через точку D (D1,D2) проводим параллель радиуса r и горизонтальную проекцию меридиана S1D1

2. Проводим касательную к параллели D2t2║X, D1t1S1D1.

3. Горизонтальная проекция касательной l1 совпадает с горизонтальной проекцией меридиана S1D1≡l1.

4. Для построения фронтальной проекции касательной l2 , меридиональную плоскость Р 1 , проходящую через точку D, повернем вокруг вертикальной оси в положение Р1║П2, то есть до совмещения с главным меридианом . Точка D при этом займет положение D`1, D`2.

5. Проводим через проекцию D`2 касательную к главному меридиану (l`2C2D`2) и продолжим ее до пересечения с осью в точке К2 . Эта касательная является в то же время и линией наибольшего ската (Л.Н.С.) касательной плоскости.

6. При возвращении плоскости Р в первоначальное положение точка К остается неподвижной.

7. Соединив К2 и D2 получим фронтальную проекцию касательной l (l2).

8. Две пересекающиеся касательные t и l определяют единственную плоскость к тору в точке D.

Пример 6. Построить плоскость касательную к сфере в точке А на ее поверхности. (рис. 10.10)

Рисунок 10.10

Известно, что радиус сферы СА, проведенный в точку касания, является нормалью сферической поверхности. Поэтому задача сводится к построению плоскости перпендикулярной радиусу СА.

Строим плоскость, задавая ее горизонталью ht и фронталью fl, перпендикулярными к радиусу СА (f2l2C2A2, h1t1C1A1).

Эти пересекающиеся прямые t∩l и определяют плоскость, касательную к сфере в точке А.

Пример 7. Построить плоскость касательную к сфере и проходящую через точку S, не принадлежащую поверхности сферы. Точка S расположена в горизонтальной экваториальной плоскости сферы. (рис.10.11)

Рисунок 10.11

1. Через точку S вне поверхности сферы можно провести множество плоскостей касательных к сфере. Поверхностью, огибающей это семейство плоскостей, является некоторая коническая поверхность взаимокасательная со сферой.

2. Эта коническая поверхность, описанная вокруг сферы, касается ее по окружности взаимокасания 1-3-2-4SC. Поэтому любая плоскость, которая касается конуса по образующей, будет касаться и сферы в единственной точке, общей для конуса и сферы и лежащей на окружности взаимокасания.

3. Задача в данном варианте имеет бесчисленное множество решений (если нет ограничивающих условий).

4. Из проекций заданной точки S (S1,S2) проводим касательные к окружностям экватора и меридиана сферы. Получаем точки 1, 2, 3, 4.

5. Горизонтальная проекция окружности взаимокасания проецируется в отрезок прямой 1121S1C1 (так как ось вращения SС║П1).

6. Фронтальной проекцией окружности взаимокасания является эллипс, малая ось которого отрезок 1122, а большая ось – фронтальная проекция 5262 диаметра окружности параллельного плоскости П2 (5262=1121).

7. промежуточные точки эллипса определяются с помощью параллелей сферы Т, Р… (точки 7,8,9,10).

8. Любая касательная плоскость к сфере задается образующей и касательной к окружности основания вспомогательного конуса. Например, плоскости R и Q являются касательными к сфере через точку S. (R и QП1)

9. Другие касательные плоскости легко построить, если ось вращения вспомогательного конуса SC сделать проецирующей (метод перемены плоскостей проекций), а затем решать как в примере 10.6.

10.1.3. Касательные плоскости к линейчатым поверхностям с гиперболическими точками.

У не развертывающихся линейчатых поверхностей гиперболического гиперболоида или однополостного гиперболоида - через каждую точку поверхности проходят две образующие, принадлежащие к различным семействам. Эти образующие и определяю касательную плоскость в каждой точке поверхности. Касательная плоскость, прикасаясь к поверхности в точке Е (рис. 10.12), пересекает поверхность по образующим PQ и MN, проходящим через эту точку.

Часть поверхности лежит по одну сторону касательной плоскости, а другая часть поверхности – по другую сторону. В каждой точке образующей будет новая касательная плоскость.

Рисунок 10.12

 Проекция линии пересечения  на эту плоскость, определяется на эпюре без дополнительных построений. Пусть конус вращения с вертикальной осью пересекается фронтально проецирующим цилиндром рис. 8.5. Фронтальная проекция линии пересечения известна, она совпадет с фронтальной проекцией цилиндра. Отметим опорные, характерные и вспомогательные точки. Фронтальные проекции  опорных точек 1 и 2 находим по линиям связи, проведя через них параллели. Точки 3 и 3` являются точками границы видимости линии пересечения. Найденные горизонтальные проекции точек соединяем плавной кривой.


на главную