Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Тени от геометрических тел. От любого геометрического тела можно построит в той или иной аксонометрической проекции падающую тень, а на самом теле найти его собственную тень. На рисунке 11.39, 11.40 построены кубы в прямоугольной изометрии и диметрии, найдены падающие тени и показаны тени собственные.

Рисунок 11.39

Рисунок 40

Во всех видах аксонометрических проекциях техника построения теней одинакова. Вычерчиваем предмет, задаемся направлением луча S и его вторичной проекции S1. Через каждую точку проводим лечи S, а через проекции точек предмета – проекции лучей S1.

Пересечение луча S с проекцией луча S1 даст тень от точки А в точке АК. Найдя таким образом тени ряда точек, соединяем их между собой и с основанием, если предмет стоит на плоскости.

На рисунке 11.41 построена тень от пирамиды в четырех вариантах, т.е. освещение взято с разных сторон. Часто берут направление луча параллельно диагонали куба, как в метода ортогональных проекций. Для того чтобы построить тень от пирамиды, стоящей на горизонтальной плоскости, надо задаться направлением луча в пространстве и его проекцией на плоскости, причем направление луча можно выбрать в зависимости от желания показать в тени те или иные элементы предмета.

Рисунок 11.41

Так, на рисунке 11.41а тень падает слева, вторичная проекция луча параллельна оси проекции ОХ. На рисунке 11.41б предмет освещен сзади, вторичная проекция луча направлена в обратном направлении. На рисунке 11.41в предмет освещен с лева и сзади, а на рисунке 11.41г – слева направо.

Примеры построения теней на строительных объектах.

Рассмотрим подробнее построение теней отдельных элементов зданий.

Рисунок 11.42

На рисунке 11.42 показано построение тени от карниза AD на плоскость стены Р. Тень карниза пройдет через точку DP – тень от произвольной точки D на плоскость Р и будет параллельна карнизу, так как карниз параллелен плоскости Р. Эту же тень можно построить способом обратного луча. С этой целью из точки МТ, в которой пересекаются тени, падающие на землю от карниза и от угла стены, проведен луч в обратном направлении до пересечения его в точке М1 с углом стены. Тень от карниза по стене пройдет через точку М1.

На рисунке 11.43 показано построение тени от цоколя и угла стены.

Рисунок 11.43

Контур собственной тени цоколя проходит через точки В, А и С, а на стене граница собственной тени – угол стены DE. Тень прямой АВ совпадает с проекцией луча, тень прямой АС проходит через тень АТ параллельно АС. Тень от угла стены падает сначала на верхнюю плоскость (обрез) цоколя и параллельна проекции луча, а затем в точке F1 «соскальзывает» с цоколя на землю и дальше идет через точку FT по земле параллельно проекции луча.

На рисунке 11.44 изображена дверная ниша.

Рисунок 11.44

Тени будут отбрасывать прямые АВ и АС. Эти тени будут параллельны указанным прямым и проходят через точку АТ – тень от точки А, падающую на плоскость ниши Т.

Контур собственной тени пристройки к стене, изображенной на рисунке 11.45 проходит через точки L, K и F.

Рисунок 11.45

Тень от прямой LK совпадает с проекцией луча. Тень от прямой KF по горизонтальной плоскости Н пойдет через точку КТ и мнимую тень от точки F на Н – FT. В действительности, тень от точки F совпадает с этой точкой, и, дойдя до стены, тень в точке 1 изломится и по стене пойдет в точку F, в которой прямая KF пересекает стену.

К торцевой стене здания (рисунок 11.46) примыкает пристройка призматической формы, контур собственной тени которой проходит через точки С, А и В.

Рисунок 11.46

Рассмотрим построение тени пристройки, падающей на здание. Тень прямой СА на участке С1 совпадает с проекцией луча света, на участке 1 – 2 параллельна СА, так как указанная прямая параллельна стене. Тень от точки А падает на передний скат крыши, эта тень АР расположена на прямой 2М, по которой пересекает крышу вспомогательная горизонтально-проецирующая плоскость, проведенная через луч света, проходящий через точку А. Тень от прямой АВ на передний скат крыши проходит через точку АР и точку 4, в которой прямая АВ пересекла бы плоскость Р, если ее продлить вправо вверх. Дойдя до конька крыши, в точке 3 тень изломится и пройдет по заднему скату крыши в точку 6. прямая 3 – 6 есть продолжение прямой 5 – 3. В точке 5 прямая АВ пересекла бы скат крыши, если его продлить влево вверх (тень от прямой на плоскость проходит через точку пересечения прямой с плоскостью).

Литература

Черчение Богомолов С.К. Воинов А.В. «Машиностроение».

Строительное черчение Будасов Б.В. Каминский В.П. Москва Стройиздат.

Начертательная геометрия Климухин А.Т. Москва Стройиздат.

Курс начертательной геометрии Гордон В.О. Семенцов – Огневский М.А. Москва «Наука».

Начертательная геометрия Крылов Н.Н. Москва «Высшая школа»

Начертательная геометрия Короев Ю.И. Москва Стройиздат.

Деление окружности на пять и десять равных частей и построение правильного вписанного пятиугольника и десятиугольника показано на рисунке 18.

Половину любого диаметра (радиус) делят пополам (рисунок 18, а), получают точку А. Из точки А, как из центра, проводят дугу радиусом, равным расстоянию от точки А до точки 1, до пересечения со второй половиной этого диаметра, в точке В (рисунок 18, б). Отрезок 1В равен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности (рисунок 18, в) радиусом R, равным отрезку 1В, делят окружность на пять равных частей.

 


 а) б) в) г)

 Рисунок 18


на главную