Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Положение плоскостей относительно плоскостей проекций

Возможны следующие положения плоскости относительно плоскостей проекций H,V,W:

1) плоскость не перпендикулярна ни к одной из плоскостей проекций;

2) плоскость перпендикулярна к одной из плоскостей проекций;

3) плоскость перпендикулярна к двум плоскостям проекций.

1.Плоскость, не перпендикулярная ни к одной из плоскостей проекций, является плоскостью общего положения (см, рис. 3,1-3.5), Плоскость общего положения (см рис. 3.9) ,пересекает все плоскости проекций. Следы плоскости общего положения не перпендикулярны к осям проекций

2. Если плоскость перпендикулярна к одной из плоскостей

 проекций, то возможны три случая:

а) плоскость перпендикулярна к горизонтальной плоскости проекции. Такие плоскости называются горизонтально проецирующими (рис.3,21, 3.22).

Рис.3.21 Рис.3.22

На рис.3.21 плоскость задана проекциями треугольника АВС. Горизонтальная проекция представляет собой отрезок прямой линии. Угол ф2 равен углу между заданной плоскостью и плоскостью V. На рис. 3,22 изображена горизонтально проецирующая плоскость b, которая задана следами. Фронтальный след плоскости b перпендикулярен к плоскости Н и к оси проекций X. Угол ф2 является

линейным углом двугранного угла между горизонтально проецирующей плоскостью b и плоскостью V.

б) плоскость перпендикулярна к фронтальной плоскости проекции. Такие плоскости называются фронтальнопроецирующими.

Рис.3.23 Рис.3.24

На рис, 3.23 фронтально - проецирующая плоскость задана треугольником DEF, фронтальная проекция представляет собой отрезок прямой линии. Угол ф1 равен углу между плоскостью DEF и плоскостью Н.

На рис.3,24 фронтально - проецирующая плоскость g задана следами. Горизонтальный след gн перпендикулярен к плоскости V и к оси X. Угол ф1 равен углу наклона плоскости g к плоскости Н;

в) плоскость перпендикулярна к профильной плоскости проекций. Такие плоскости называются профильно- проецирующи-ми,

На рис,3,25 профильно - проецирующая плоскость задана треугольником АВС. Горизонталь этой плоскости перпендикулярна к плоскости W и представляет собой отрезок прямой линии. Угол ф1 равен углу наклона плоскости треугольника АВС к плоскости Н.


31


Рис.3.25 Рис.3.26

На рис.3.26 профильно - проецирующая плоскость b задана следами. Угол ф1 равен углу наклона плоскости b к плоскости Н,

Горизонтальный и фронтальный следы этой плоскости параллельны оси Хи, следовательно, параллельны между собой.

3. Если плоскость перпендикулярна к двум плоскостям проекций, то возможны три случая:

а) плоскость перпендикулярна к плоскостям V, W т.е. параллельна плоскости Н. Такие плоскости называют горизонталь-

ными .

Рис.3.27 Рис.3.28

На рис.3.27 горизонтальная плоскость задана треугольником АВС. Фронтальная проекция этой плоскости апробировалась в прямую линию, параллельную оси Х.

На рис.3.28 горизонтальная плоскость задана следами. Фронтальный след этой плоскости параллелен оси X.

б) плоскость перпендикулярна к плоскостям Н и W, т.е. параллельна плоскости V. Такие плоскости называют фронтальными

Рис.3.29 Рис.3.30

На рис.3.29 фронтальная плоскость задана треугольником CDE, Горизонтальная проекция этой плоскости представляет прямую линию, параллельную оси X.

На рис. 3.30 фронтальная плоскость b задана следами. Горизонтальный след этой плоскости параллелен оси X,

в) плоскость перпендикулярна к плоскостям Н и V, т.е. параллельна W. Такие плоскости называют профильными.

 Рис.3.31 Рис.3.32

На рис.3.31 профильная плоскость задана треугольником EFG, Фронтальная проекция этой плоскости представляет собой прямую линию, параллельную оси Z

На рис.3.32 профильная плоскость a задана следами. Фронтальный и горизонтальный следы этой плоскости перпендикулярны к оси X.

3.5.1. Пересечение прямой линии с плоскостью, перпендикулярной к одной или двум плоскостям проекций

Плоскость, перпендикулярная к плоскости проекций проецируется на последнюю в виде прямой линии. На этой прямой (проекции плоскости) должна находится соответствующая проекция точки, в которой некоторая прямая пересекает такую плоскость. Эта точка также называется точкой встречи прямой с плоскостью.

 Рис.,3.33 Рис,3.34 Рис.3.35 Рис.З.З6

На рис. 3.33 плоскость, заданная треугольником CDE, перпендикулярна плоскости V. Она пересекает прямую АВ в точке К. Фронтальная проекция которой К" находится в пересечении С"Е" и А"В", так как треугольник CDE на фронтальную плоскость с проецировался в прямую линию. Найдя К", определяем К'. Так как отрезок KB находится под плоскостью треугольника CDE, то на горизонтальной проекции он будет невидим и наводится штриховой линией.

На рис.3.34 плоскость g является горизонтальной плоскостью, ее фронтальный след является фронтальной проекцией плоскости у.

Проекция К" определяется в пересечении А"В" и у".

На рис. 3.3 5 плоскость а горизонтально - проецирующая плоскость. Горизонтальная проекция точки К' является точкой пересечения а' и А'В'.

На рис. 3,3 б рассматриваются две скрещивающиеся прямые АВ и CD. Определяем видимость этих прямых на горизонтальной и на фронтальной проекциях методом конкурирующих точек.

Конкурирующие точки 1 и 2 расположены на одной, общей

для них, проецирующей прямой (линии связи), перпендикулярной к плоскости V, а конкурирующие точки 3 и 4 расположены на проецирующей прямой, перпендикулярной к плоскости Н.

Точка пересечения горизонтальных проекций данных прямых А'В' и С¢D¢ представляет собой слившиеся проекции двух точек 3' и 4', из которых точка 4 принадлежит прямой АВ, точка 3 принадлежит прямой CD. Так как точка 3 расположена выше точки 4 (3'3" > 4'4"), то видима относительно плоскости Н точка 3, точка 4 закрыта точкой 3(4' взята в скобки).

Так же и точка пересечения фронтальных проекций прямых А"В" и C"D" представляет собой слившиеся проекции двух конкурирующих точек 1 и 2, Точка 1 принадлежит АВ, точка 2 принадлежит прямой CD. Так как точка 1 расположена ближе к нам, чем точка 2 (1"1¢> 2'2"), то видима относительно плоскости V точка 1, закрывающая точку 2 (2" взята в скобки).

3.6. Построение линии пересечения двух плоскостей

Прямая линия, получаемая при взаимном пересечении двухплоскостей, определяется двумя точками, каждая из которых одновременно принадлежит обеим плоскостям.

На рис. 3.37 плоскость общего положения, заданную тре-угольником АВС, пересекает фронтально - проецирующая плоскость, заданная треугольником DEF, Так как треугольник DEF проецируется на плоскость V в виде прямой линии D"F", то фронтальная проекция линии пересечения обеих плоскостей представляют собой отрезок K1"K2". Находим его горизонталь-ную проекцию и определяем видимость.

 Рис.3.37 Рис.3.38

35

Горизонтально проецирующая плоскость а пересекает плоскость треугольника АВС (рис, 3.3 8), Горизонтальная проекция линии пересечения этих плоскостей представляет из себя отрезок M'N', который определяется на следе оси'.

Если плоскости заданы следами на плоскостях проекций, то, токи, определяющие прямую пересечения плоскостей} следует выбирать в точках пересечения одноименных следов плоскостей (рис.3.39); прямая, проходящая через эти точки, общие для обеих плоскостей, - их линия пересечения. Поэтому для построения проекций линии пересечения плоскостей a и b необходимо:

1) найти точку М' в пересечении следов aн' и bн' и точку N" в пересечении an¢ ¢и bn¢¢, а по ним проекции М" и N'.

2) провести прямые линии M¢¢N¢¢ и M'N'.

Рис.3.39

Точки пересечения одноименных следов плоскостей являются следами линии пересечения этих плоскостей.

Рис.3.40

36

На рис.3.40 пересекаются плоскости a и b. Плоскость a плоскость общего положения, Плоскость b - горизонтальная плоскость. Для построения линии пересечения необходимо:

1) найти точку N" в пересечении следов an¢¢ и bv¢¢;

2) провести через эту точку прямую, исходя из положения

плоскостей и их следов.

На рисунках (3.40 - 3.42) показаны случаи, когда известно направление линии пересечения. Поэтому достаточно иметь лишь одну точку от пересечения следов и, затем, провести через эту точку прямую, исходя из положения плоскостей и их следов.

3.7.Пересечение прямой линии с плоскостью общего положения

Построение точки пересечения прямой с плоскостью общего положения выполняется по следующему алгоритму:

1) через данную прямую (MN) провести некоторую вспомогательную плоскость (g);

2} построить прямую (ED), линию пересечения данной плоскости (АВС) и вспомогательной плоскости (g);

3) определить положение точки (К) пересечения данной прямой (MN) и построенной линии пересечения (ED);

4) определить видимость прямой (MN) относительно плоскостей Н и V.

На рис.3.43 прямая MN пересекает плоскость, заданную треугольком АВС. Через прямую MN проводим


ником АВС. Через прямую MN проводим

горизонтально проецирующую плоскость g. Так как вспомогательная плоскость g горизонтально - проецирующая, то и горизонтальной проекцией плоскости g и треугольника АВС является прямая линия E'D'. Находим ее фронтальную проекцию E'D". Затем построим К",в которой E"D" пересекает M"N" и определяем ее горизонтальную проекцию К'. Определяем видимость отрезков МК и

KN используя конкурирующие точки

Рис.3.44 Рис.3.45 3.46

На рис.3.44 прямая АВ пересекает плоскость а общего положения. Проводим через прямую АВ горизонтально - проецирующую плоскость b, находим линию пересечения плоскости а и плоскости b (MN).

Определяем точку К" как точку пересечения M"N" и А"В". Находим точку К' и определяем видимость.

На рис. 3.45 плоскость а задана следами. Прямая, пересекающая плоскость a, является горизонталью, Через прямую АВ проводим горизонтальную плоскость b(b||Н). Плоскость р пересекает плоскость а по горизонтали NK, принадлежащей плоскости a Затем определяем видимость. На рис. 3.46 плоскость а задана следами; прямая АВ, пересекающая плоскость а, горизонтально - проецирующая, на плоскость Н она проецируется в точку и, следовательно, горизонтальная проекция точки пересечения прямой АВ и плоскости a¢) находится в этой точке.

 A'=B=K', Положение К" определяется при помощи горизонтали.

3.8. Пересечение двух плоскостей общего положения

Рассмотрим общий случай построения линии пересечения двух плоскостей (рис.3.47).

Рис. 3.47

Одна из пересекающихся плоскостей (b) задана двумя пере-секающимися прямыми (АВ Ç ВС). Вторая плоскость (g) задана двумя параллельными прямыми (DE ||FG). В результате взаимного пересечения плоскостей b и g получена прямая K1K2 (bÇg== K1K2). Для определения положения точек K1 и К2 возьмем две вспомогательные фронтально - проецирующие плоскости a1 и a2 пересекающие и плоскость b, и плоскость g. При пересечении плоскостью a1 плоскости b образуется прямая с проекциями 1"2" и 1¢2'. При пересечении плоскостью a1 плоскости g образуется прямая с проекциями 3"4" и 3'4'. Пересечение линий12 и 34 определяет первую точку K1 линии пересечения плоскостей b и g.

Введя фронтально-проецирующую плоскость a2, получаем в ее пересечении с плоскостями b и g прямые с проекциями 5 "б",5'б' и 7"8", 7'8'. Эти прямые, расположенные в плоскости a2,в

своем пересечении определяют вторую точку К2 линии пересечения b и g. Получив проекции K1" и К2" находим на следах a1v" и a2v"проекции K1" и К2". Проекции K1"К2¢¢ и K1'K2' являются проекциями искомой прямой пересечения плоскостей b и g.

3.9. Построение линии пересечения двух плоскостей по точкам пресечения прямых линий с плоскостью

Этот способ заключается в том, что находят точки пересечения двух прямых, принадлежащих одной из плоскостей, с другой плоскостью. Следовательно, необходимо уметь строить точку пересечения прямой с плоскостью общего положения (рис.3.43).

На рис. 3,48 дано построение линии пересечения двух треугольников АВС и DEF. Прямая K1K2 построена по точкам пересечения сторон АС и ВС треугольника АВС с плоскостью треугольника DEF Вспомогательная фронтально-проецирующая плоскость g1 проведенная через АС, пересекает треугольник DEF по прямой с проекциями 1."2" и 1'2'; в пересечении проекций А'С' и 1'2' получаем горизонтальную проекцию точки K1' - пересечения

 прямой АС и треугольника DEF. Затем строим фронтальную проекцию K1//

Рис.3.48

Вспомогательная фронтально-проецирующая плоскость g2, проведенная через ВС, пересекает треугольник DEF по прямой с проекциями 3"4" и 3'4', В пересечении проекций 3'4' и В'С' получаем горизонтальную проекцию точки К2 - пересечения прямой ВС и треугольника DEF. Затем строим фронтальную проекцию точки К2. Видимость на чертеже определяем методом конкурирующих точек (см, рис.3.36),

 

Если деталь изображается с разрывом, размерная линия не прерывается (рисунок 4). Допускается размерную линию проводить с обрывом при указании размера диаметра окружности, при этом размерная линия обрывается за центром окружности (рисунок 5, а). Если на чертеже симметричного предмета элементы изображены только до оси симметрии или с обрывом, то размерные линии этим элементам, проводят с обрывом и обрыв размерной линии делают дальше оси или линии обрыва (рисунок 5, б и в).

При недостатке места для стрелок из-за близко расположенных контурных линий контурные линии можно прерывать.

Размерные числа ставят над размерной линией на расстоянии 1...1.5 мм, параллельно ей, и по возможности ближе к середине под углом 75°. На учебных чертежах высота размерных чисел равна 3,5 мм.

 а) б) в)  а) б)

 Рисунок 5 Рисунок 6

Линейные размеры на чертеже указываются  в миллиметрах без указания единицы измерения при размерном числе.

При нанесении нескольких параллельных размерных линий размерные числа над ними располагают в шахматном порядке (рисунок 7).

Если размерная линия вертикальная, то размерное число пишут слева от нее (рисунок 8).

 


 Рисунок 7 Рисунок 8

Задание прямых линии и плоских фигур в частных положениях относительно плоскостей проекций значительно упрощает построения и решение задач, позволяет получить ответ или не- посредственно по данному чертежу, или при помощи простейших построений. Такое частное взаимное расположение прямых линий, плоских фигур и плоскостей проекций может быть обеспечено преобразованием чертежа.

В начертательной геометрии пользуются кинематическим способом образования поверхностей. При этом способе поверхность рассматривается как совокупность всех последовательных положений некоторой линии, перемещающейся в пространстве по определенному закону. Линия при своем движении может оставаться неизменной или непрерывно меняться.

Пересечение  поверхностей, когда одна из них проецирующая

Общие сведения о пересечении поверхности плоскостью. При пересечении любого тела е плоскостью получается некоторого вида плоская фигура, называемая сечением. Под сечением понимают ту часть секущей плоскости, которая находится внутри рассеченного тела и ограничена линией сечения. Линией сечения тела плоскостью является контур этого сечения


на главную