Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

Пересечение тора с плоскостью

В пересечении тора с плоскостью могут быть получены различного рода кривые линии. Если плоскость проходит через ось вращения тора, в сечении получаются две окружности - образующие, если плоскость перпендикулярна к оси вращения, в сечении получаются две окружности - параллели.

а б в г Рис.6.9

84

Все другие плоскости пересекают поверхность по кривым, они имеют общее название - кривые Персея (Персей - геометр Древней Греции). Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.

На рис 6.9 изображены кривые Персея, полученные в пересечении тора плоскостями А- А ( рис 6.9 , а). Б- Б ( рис 6.9 б). В- В ( рис 6.9, в), Г- Г (рис 6-9 , г).

Кривую линию пересечения тора плоскостью в общем случае строят с помощью вспомогательных плоскостей, пресекающих тор и секущую плоскость. При этом подбирают плоскости, пересекающие тор по окружности, т.е. расположены перпендикулярно оси тора или проходящей через его ось.

На рис.6.10.показано применение вспомогательных плоскостей y1 (y1²) и y2 (y2²), перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью а (а"').

Рис 6.10

Top имеет два изображения — фронтальную проекцию и половину профильной проекции. Полуокружность радиуса R2 (профильная проекция линии пересечения тора вспомогательной плоскостью у2 касается проекции плоскости а (следа а"''). Тем самым определяются профильная проекция 3²¢²¢ 3²¢ ^ а'² ) и по ней фронтальная проекция 2" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R1 - профильная проекция линии пересечения тора вспомогательной плоскостью у1. Она пересекает профильную проекцию плоскости а (след а'") в двух точках 5²¢ и 7²¢ — профильных проекциях точек линии пересечения. Проводя аналогичные построения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния /1 и /2 на фронтальной проекции для нанесения точек 5о, 7о и Зо. Точки 6о, 8о и 4о построены как симметричные.

Примеры построения чертежей деталей, усеченных проецирующими плоскостями

Иногда на практике возникает необходимость в построении фигуры сечения не на проекциях детали, а отдельно на чертеже, на- пример с целью определения истинной величины этой фигуры. Если при этом секущая плоскость наклонена к плоскостям проекций, сечение называют наклонным

Пример наклонного сечения детали дан на рис 6.11 Как видно из чертежа, фигура сечения детали фронтально-проецирующей пло- скостью состоит из прямоугольника (результат пересечения наруж- ной поверхности детали — многогранника) и эллипса (результат пересечения плоскостью цилиндрического отверстия). Кроме того, в плоскость сечения попали прямоугольный вырез, идущий вдоль основания детали, два цилиндрических отверстия, из них одно сквозное, и вырез в верхней части детали. Цилиндрические отверстия изображаются в форме прямоугольников, так как секущая плоскость направлена вдоль образующих этих поверхностей.

Истинная величина фигуры сечения определена способом замены плоскостей проекций. Ось проекций новой системы на чертеже не по

казана. Поскольку полученная фигура сечения симметрична, в подстроении ее использована ось симметрии. На чертеже эту ось лучше располагать параллельно следу секущей плоскости. Тогда все размеры, выражающие длину фигуры сечения (I) и ее частей, могут быть непосредственно с помощью линий проекционной связи перенесены с фронтальной проекции на указанную ось. Размеры, относящиеся к ширине фигуры сечения (/; и др.), взяты с горизонтальной проекции.

Величина большой оси эллипса, как проекции линии сечения цилиндра наклонной плоскостью, определена по фронтальной проекции. Малая ось равна диаметру цилиндрического отверстия.

Фигуру сечения детали можно размещать и не в проекционной связи с фронтальной проекцией, в том числе и с ее поворотом.

Рис 6.11


Спираль Архимеда — кривая, образованная движением точки, равномерно движущейся по прямой, которая, в свою очередь, равномерно вращается в плоскости вокруг неподвижной точки, принадлежащей этой прямой. Характер спирали Архимеда определяется шагом t, т. е. перемещение прямой может происходить как по часовой стрелке, так и против.

 


Рисунок 30

Чтобы построить спираль, необходимо зафиксировать несколько промежуточных положе­ний точки и прямой, по которой она перемещается. Для этого вспомогательная окружность, проведенная радиусом, равным t и отрезок О8, равный шагу, делятся на одинаковое число рав­ных частей, например, на восемь (рисунок 30). Начальная точка (Ко) совпадает с точкой О. Отрезок O8, по которому движется точка, вращается так, что один конец (точка О) неподвижен. При по­вороте отрезка на 1/8 полного угла (45°) точка К пройдет 1/8 своего пути. Поэтому если из цен­тра О радиусом O1 провести дугу до пересечения с прямой, проведенной через точку 1' и центр О, получим точку К1 принадлежащую спирали. Если провести дугу радиусом O2 до пересече­ния с прямой O2', получится точка K2, принадлежащая спирали, и т. д. При полном обороте от­резка O8 вокруг точки О отрезок совпадает со своим начальным положением, а точка К займет положение K8.


на главную