Примеры задач по математике Основы расчета и проектирования деталей и узлов машин Начертательная геометрия Курс лекций и практических занатий по черчению Базовый курс по электротехнике

Начертательная геометрия

З а д а ч а 17. По данной фронтальной проекции К2  точки К построить горизонтальную проекцию К1, исходя из условия, что точка К принадлежит грани SАС (рис.17).

Построение точки на поверхности выполняется как построение точки на плоскости грани. 

Р е ш е н и е . На грани SАС при помощи прямой  1–2 (1121 ; 1222) по данной фронтальной проекции К2 точки К построена горизонтальная проекция К1 , исходя из условия, что точка К должна лежать в грани SАС.

На рис.18 показано построение К1 на грани SВС при помощи прямой, проведенной через вершину S пирамиды.

 

  

 Рис. 17 Рис. 18

 З а д а ч а 18. Задать на поверхности конуса произвольную точку А (рис.19).

Рис. 19

Р е ш е н и е .

1-й способ (рис.19а). На основании конуса задаем произвольную точку К(К1 , К2) и проводим вспомогательную образующую через точки  S и К. На этой образующей берем точку А, которая и лежит на заданной поверхности.

2-й способ (рис.19б). На поверхности конуса проводим вспомогательную параллель; ее фронтальная проекция является отрезком прямой, параллельным оси проекций XO, а горизонтальная проекция – окружностью. На этой параллели берем точку А , которая и лежит на поверхности.

З а д а ч а 19. Построить горизонтальную проекцию линии на поверхности конуса по заданной фронтальной проекции (рис.20).

Р е ш е н и е . Построение горизонтальной проекции заданной линии начинаем с того, что отмечаем точки, принадлежащие очерковым образующим. Эти точки называют характерными.

Точка 3 принадлежит передней образующей,  8 – задней, 2 – правой, 1 – левой и точка 10 – основанию конуса. Между этими точками отмечают так называемые случайные точки, помогающие установить характер линии. Точки 4, 5, 6, 7 и 9 – случайные.

Горизонтальные проекции всех отмеченных точек находим из условия принадлежности их конусу (см. задачу 16).

 Рис. 20

При соединении точек следует учитывать их видимость. В нашем примере все точки сверху видимы, поэтому и линия, соединяющая их, видима сверху.

З а д а ч а 20. Построить проекции линии пересечения пирамиды SАВСD с проецирующей плоскостью Г(Г2) (рис.21).

Известно, что любая поверхность пересекается плоскостью по некоторой линии, точки которой принадлежат как поверхности, так и пересекающей плоскости. Общим приемом построения проекций линии пересечения поверхности плоскостью является построение отдельных точек, принадлежащих этой линии, с последующим соединением их в определенной последовательности. Линия пересечения поверхности любого многогранника плоскостью будет ломаная линия, которая Рис. 21 состоит из отрезков прямых, являющихся линиями пересечения отдельных граней рассматриваемого многогранника с указанной плоскостью. Характерными точками этой линии будут ее вершины, расположенные на ребрах многогранника. В нашем примере пирамида пересекается фронтально проецирующей плоскостью Г(Г2) ⊥ П2 ; это значит, что фронтальная проекция искомой линии пересечения 12 ,22 ,32 ,42 непосредственно задана на чертеже и совпадает с фронтальной проекцией всей плоскости Г2 .

При помощи линии связи находим горизонтальные проекции 112131 и 41 сечения. Натуральная величина сечения определена способом замены плоскостей проекций (см. задачу 14). За новую горизонтальную плоскость проекций взята сама плоскость Г. Новой осью проекций является Г2 .

З а д а ч а 21. Построить в прямоугольной изометрии сечение пирамиды фронтально проецирующей плоскостью. Пирамида задана своими ортогональными проекциями (рис.22).

Рис. 22

Р е ш е н и е . Через точку О1 проводим прямые x , y, z , которые принимаем за оси натуральной системы координат (рис.29а).

Вычерчиваем аксонометрические оси координат с углами в 1200 между ними (рис.22б). По координатам, определенным непосредственным измерением ортогонального чертежа, строим аксонометрическую и вторичную горизонтальную проекции пирамиды. В нашем примере основание пирамиды АВСDЕ лежит на плоскости XOY, поэтому ее вторичная проекция совпадает с аксонометрической проекцией и обозначена А/ В/ С/ D/ E/ . Далее по координатам X и Y вершин сечения строим вторичную горизонтальную проекцию сечения 11/ , 21/ , 31/, 41/ , 51/ . Затем из точек 11 /, 21/, 31/ , 41/ , 51/ проводим проецирующие прямые, параллельные оси z/ , до пересечения с соответствующими ребрами пирамиды в точках 1/ , 2/ , 3/ , 4/ , 5/ . Соединяя найденные точки, получим фигуру сечения пирамиды фронтально-проецирующей плоскостью.

Для решения задачи на построение линии пересечения двух фигур, одна из которых занимает проецирующее положение, достаточно выделить на чертеже уже имеющуюся проекцию линии пересечения, которая совпадает с вырожденной проекцией проецирующей фигуры.

Вторую проекцию линии пересечения надо построить, исходя из условия ее принадлежности фигуре, занимающей общее положение.

Для решения этой задачи необходимо знать решение задач 18, 19, 20, а также нижеследующие задачи.

З а д а ч а 22. Построить горизонтальную проекцию плоской линии, принадлежащей поверхности конуса (рис.23).

Определяем плоскую кривую. Так как плоскость, в которой находится кривая, параллельна образующей  конуса, то кривая – п а р а б о л а . Строим характерные точки А , М , N , - они находятся на известных линиях поверхности.

 Рис. 23 

Случайные точки  1 , 2, 3 , 4 строим с помощью параллелей конуса (см. задачу 18).

З а д а ч а 23. Построить фронтальную проекцию плоской линии, принадлежащей поверхности конуса (рис.24).

Кривая – гипербола, т.к. расположена в плоскости, параллельной двум образующим конуса.

Строим характерные точки: А (вершина гиперболы); N , M – конечные точки гиперболы; Т – точка видимости фронтальной проекции линии.

Случайные точки строим с помощью параллелей конуса.

  Рис. 24 Рис. 25

З а д а ч а 24. Построить фронтальную проекцию плоской линии, принадлежащей поверхности сферы (рис.25).

Построить аксонометрическую проекцию модели.

Заполнить основную надпись.

4. Примеры графических работ №3 и №4 приведены ниже.


 

 

 


Разрезы.

Разрезом называется изображение предмета, полученное при мысленном рассечении его одной или несколькими секущими плоскостями.

При этом часть предмета, расположенная между наблюдателем и секущей плоскостью, мысленно удаляется, а на плоскости проекции изображается то, что получается в секущей плоскости (фигура сечения предмета секущей плоскостью) и что расположено за ней.

При разрезе внутренние линии контура, изображавшиеся на чертеже штриховыми линиями, становятся видимыми и изображаются сплошными основными линиями.

В зависимости от числа секущих плоскостей разрезы разделяются на простые (при одной секущей плоскости) и сложные (при нескольких секущих плоскостях).

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы разделяются  на горизонтальные, вертикальные и наклонные.

Разрезы называются продольными, если секущие плоскости нап­равлены вдоль длины или высоты предмета, и поперечными, если секущие плоскости перпендикулярны длине или высоте предмета.

На всех примерах, приведённых ниже, условно принято, что пред­меты — металлические, и для графического обозначения мате­риала в сечениях детали делается штриховая тонкая линия с наклоном под углом 45 ° к линиям рамки чертежа. Штриховка на всех изображениях одной детали выполняется в одном направлении (с правым или левым наклоном).

Кривая – о к р у ж н о с т ь , которая проецируется на фронтальную плоскость проекций в эллипс, т.к. плоскость окружности наклонена к П2 . Характерные точки кривой - А , В и С , D (определяющие большую и малую оси эллипса), а также К и Т - точки видимости. Случайные точки - 1 , 2. Фронтальную проекцию точек строим с помощью окружностей, параллельных фронтальной плоскости.


на главную